Preparing Data for Natural Language Processing
COURSE ID: JCB661
Course Overview

In today's fast-paced business world, staying ahead of the competition necessitates swiftly understanding and capitalizing on enormous volumes of data. AI's machine learning algorithms can certainly assist in deciphering that data, but when it comes to text, a different strategy is needed. Text, rich in context and information, needs to be compressed, evaluated, and contextualized differently than numerical data. This is where natural language processing, a fascinating branch of machine learning, comes into play. Businesses are increasingly leveraging NLP to mine insights from unstructured text data.

This course invites you to delve into various techniques to obtain, prepare, and refine data for NLP applications. We'll be focusing our efforts on prepping text data for efficient processing by the Latent Dirichlet Allocation (LDA) algorithm. From identifying the types of business text data relevant for investment applications, you'll move on to training and evaluating the LDA model, ensuring the output aligns with the topics present in the data.

Along this journey, you'll harness the power of word frequencies in your data to create and visualize topic groupings. By fine-tuning the composition of the input data, you'll be able to optimize the performance of the LDA algorithm. This course provides you with a thorough understanding of how to transform textual data into a format suitable for insightful analysis, ultimately boosting your business decision-making.

S$700
Certificates with this course
Trusted Site Seal
SSL Certificate