Sometimes the problem you need to solve involves amounts of data or numbers of decisions that go well beyond the capabilities of spreadsheets. You can work around these limitations by replicating spreadsheet methods of simulation and optimization in the script-based programming environment in R. The use of R carries the benefits of flexibility, automation, and expanded set of tools and algorithms.
In this course, you will work through the development and implementation of Monte Carlo simulations. You'll become familiar with the R functions most commonly used for this purpose. You'll also translate optimization problems that have been defined outside R to a form that supports computational solutions in R. You'll work with both linear and nonlinear solution methods.
It is recommended that students have a background in data analytics especially with optimization, modeling, and monte carlo simulations, in addition to a familiarity with programming syntax.
- Analysts
- Developers
- Data scientists
- Functional managers
- Consultants
- Any professional that uses data to make business decisions